
Návod na vytváranie endpointov

MonAnt Flask API is implemented using python, Flask and Apistrap. This document represents

a guideline, how to conveniently and quickly create simple and safe API endpoint.

Endpoint structure

Api endpoints are usually grouped into Blueprints, which represent bigger parts of API and also

one version. First step in order to create a new endpoint is to decide, to which version of

endpoints it should belong. Each group of the same version endpoints is located in version

coresspond folder. Second step is to decide, to which Blueprint it should belong. Each API

endpoint accepts certain payload - body of request (usually POST or PUT). Since this API uses

Schematics, you can simply define schema (items) of your request, so you can validate it.

Request schemas are defined in requests.py. You can also define schema of response of your

endpoint. This is done the same way in response.py file. Mapping of schemas to endpoint

definitions is done via defined decorators.

Endpoint naming conventions

There are certain conventions to follow, when creating a new endpoint: - name of entity, for

which there are multiple records, is in plural and as simple as possible - for exam. articles - if

endpoint consists of multiple words, they are delimited with - sign: data-providers - if we

search specific entities / documents according to their ID, ID is a part of url delimited with / sign:

$SERVER_ADDRESS/v1/articles/<article_id> - if we filter entities by other attributes related

to given entity, they are sent as parameters:

$SERVER_ADDRESS/v1/articles?author=shakespeare&created_before=20180101 - CRUD

operations are defined by type of request, not by name: HTTP POST

$SERVER_ADDRESS/v1/articles/ - creates article, its attributes are passed as data - all letters

are lowercase

Endpoint views hierarchy

Endpoint definition should be in correct version folder, such as v1, in views file, that is dedicated

to first-level entity queried in endpoint. If we have an endpoint

$SERVER_ADDRESS/v1/articles, it's view file, where article-related endpoint definitions are, is

./v1/article_views.py file.

If we have an endpoint concerning multiple related entities, its views file should be chosen

according to top-level entity: views file of

$SERVER_ADDRESS/v1/articles/<article_id>/photos endpoint, which returns all photos of

given article, should belong to ./v1/article_views.py file.

Example

Let's say we want to create a new API endpoint (version 1), that adds new book and its author to

database. The route of endpoint is /v1/books, method is POST, request scheme contains just

book name and author, and endpoint responds with at least newly created book id and status code

200:

• first thing to do is to create request schema. In file requests.py, add following:

from schematics.models import Model

 from schematics.types import StringType

 class CreateBookRequest(Model):

 name: StringType = StringType(required=True)

 author: StringType = StringType(required=True)

• then create scheme of response (file responses.py):

from schematics.models import Model

 from schematics.types import IntType

 class CreateBookResponse(Model):

 id: IntType = IntType(required=True)

• then define endpoint with route in file of folder v1, which contains your Blueprint

definition

(e.g. book_views.py) python from flask import Blueprint

from .swagger import swagger

 from .requests import CreateBookRequest

 from .responses import CreateBookResponse

 from api.models import Book

book_api: Blueprint = Blueprint('book_api', __name__)

@books_api.route('/books', methods=['POST']) # define route and method

 @swagger.autodoc() # generate documentation for endpoint (available on

<server_address>/apidocs/

 @swagger.accepts(CreateBookRequest) # accept only correct request schema

 @swagger.responds_with(CreateBookResponse, code=200) # respond with

defined response schema

 def create_book(payload: CreateBookRequest): # pass Book as parameter

 """ Create book route handler """

 print(payload.author) # access attributes in request

 book = Book(payload) # create new book entity in database

 return CreateBookResponse(dict(

 id=book.id

))

* the last step, if not already done, is to reqister API blueprint in

```api.py```: 

from api.views.v1.bookviews.py import booksapi as bookapiv1 



... 

def create_app(name: str): 

    """ Creates Flask APP """ 

        app: Flask = Flask(name) 

     

        # add auto-generated API doc 

        swagger.init_app(app) 

     

        # register API endpoints implementation 

        app.register_blueprint(book_api_v1, url_prefix='/v1') 

 

    return app 

## API versioning 

 

In case of creating new version of endpoints you should create new folder, 

which name correspond to new version, such as 

won't be supported in new version. 

Example 

Let's say we want to create v2 version of book_api endpoints. First step is to create v2 folder in 

views. Then copy book_views.py file from v1 folder. In this file add import of previous version 

view from api.views.v1 import book_views as previous_version. In this case it is 

import of v1 version of book_views. and should be used in all endpoints, where functionality is 

not changed, something like previous_version.create_book(payload). This is example of 

the inheritance of endpoint versions. For all other endpoints you can add new functionality as 

usual. New book_views.py file should look like this: 

from flask import Blueprint 

     

    from .swagger import swagger 

    from .requests import CreateBookRequest 

    from .responses import CreateBookResponse 

    from api.models import Book 

    from api.views.v1 import book_views as previous_version 

     

     

    book_api: Blueprint = Blueprint('book_api_v2', __name__) 

     

     

    @books_api.route('/books', methods=['POST']) 

    @swagger.autodoc()  

    @swagger.accepts(CreateBookRequest) 

    @swagger.responds_with(CreateBookResponse, code=200) 

    def create_book(payload: CreateBookRequest): 

        """ Create book route handler """ 

        return previous_version.create_book(payload) 

Don't forget to reqister all API blueprint in api.py: 



from api.views.v1.book_views.py import books_api as book_api_v1 

from api.views.v2.book_views.py import books_api as book_api_v2 

 

... 

 

    def create_app(name: str): 

    """ Creates Flask APP """ 

        app: Flask = Flask(name) 

     

        # add auto-generated API doc 

        swagger.init_app(app) 

     

        # register API endpoints implementation 

        app.register_blueprint(book_api_v1, url_prefix='/v1') 

        app.register_blueprint(book_api_v2, url_prefix='/v2') 

 

    return app 

And that's it! Don't forget to add tests. 


